COLORADO/LAVACA BBEST/BBASC LAVACA PROJECT ANALYSIS

4/26/2010 Kirk Kennedy CL BBEST

OVERVIEW

- TCEQ LAVACA RUN3 WAM USED AS BASE MODEL WITH FOLLOWING MODIFICATIONS
 - TEXANA STAGE II REMOVED FROM MODEL
 - CONTROL POINT FOR PROPOSED PROJECT INSERTED
- WAM PERIOD OF RECORD: 1940-1996
- WAM FLOWS FOR PROJECT LOCATION EXTRACTED FROM BASELINE MODEL
- MONTHLY WAM FLOWS DISTRIBUTED TO DAILY FLOWS USING GAGED DAILY FLOW
- RESULTING DAILY FLOWS INPUT INTO DAILY PROCESS (FRAT)
- FIRM YIFLD OF PROJECT DETERMINED FOR 6 SCENARIOS
- DAILY RESULTS USED TO PRODUCE PLOTS FOR BBASC AND AFTER PROJECT FLOWS FOR BBEST
- DEPLETIONS FROM DAILY PROCESS PLACED BACK IN WAM TO ASSESS BAY

SCENARIOS TESTED

 FIRM YIELD OF PROJECT DETERMINED FOR 6 SCENARIOS

- 1- No Environmental Requirements.
- 2- TCEQ Modified Lyons Instream Flow Requirements.
- 3- TWDB Consensus Planning Instream Flow Criteria.
- 4-CL BBEST Recommendation.
- 5-CL BBEST without Pulse.
- 6-CL BBEST with HEFR Results used for Subsistence.

PRODUCT OF ANALYSIS

- Firm Annual Yield of Project Subject to Various Environmental Flow Concepts.
- Daily Flows for Project Site for all Scenarios.
- Monthly Flows for Lavaca Bay for all Scenarios.
- Charts of Daily Flows for all Scenarios.
- Basis for Assessing Balance between Environmental and Other Needs.

FIRM YIELD RESULTS

• (1) No EFLOW Req: 15,875 af/y.

• (2) Lyons EFLOW Req: 10,240 af/y.

• (3) Consensus EFLOW Req: 9,900 af/y.

• (4) FULL BBEST EFLOW: 10,300 af/y.

• (5) BBEST EFLOW; no Pulse: 10,675 af/y.

• (6) BBEST EFLOW; HEFR as Sub 10,375 af/y.

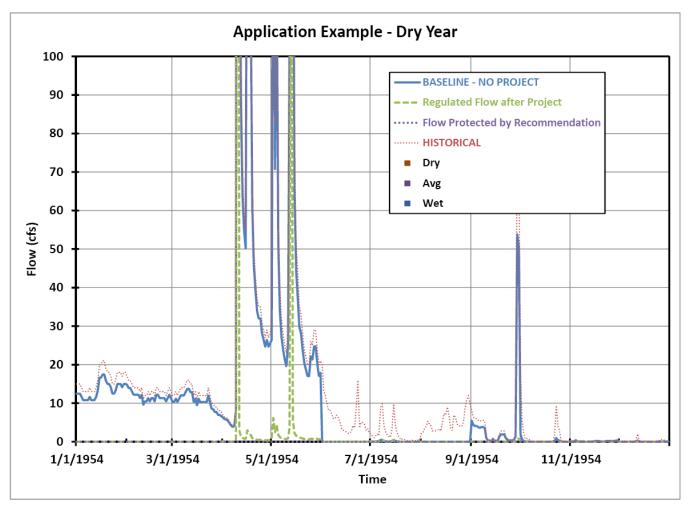
INPUTS FOR STUDY

- CL BBEST Recommendations for Edna Location
- Hydrologic Condition
- Daily Pattern of Flow
- Project Configuration (FNI Study)
 - Area / Capacity Relationship
 - Pump Rate
- WAM Model (TCEQ)
 - Total Flow
 - Flow Required for Downstream Seniors
 - Evaporation Rate

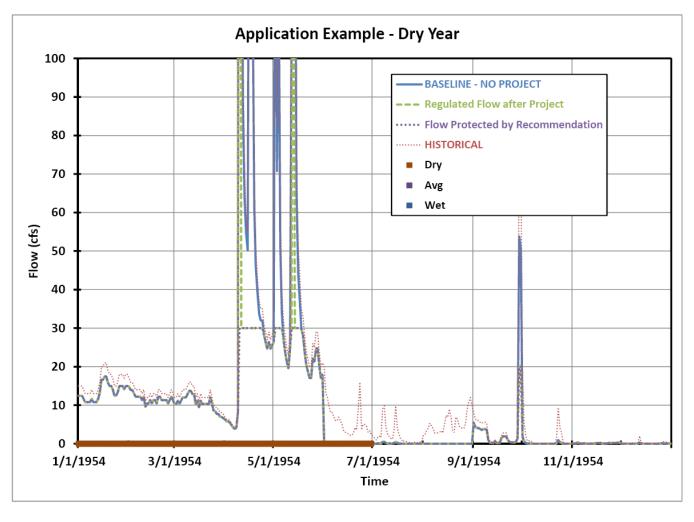
FRAT (FLOW REGIME ANALYSIS TOOL)

- DEVELOPED BY HDR AND REFINED BY TPWD (DAN OPDYKE)
- COMPLEX EXCEL SPREADSHEET
- INPUTS
 - DAILY FLOWS
 - HYDROLOGIC CONDITION
 - FLOW RECOMMENDATIONS
 - Specifically Designed to Test SB3 Type Recommendations
 - PROJECT CONFIGURATION
- OUTPUTS
 - DAILY REPRESENTATION OF PROJECT
 - DAILY FLOWS AFTER PROJECT
 - NUMEROUS CHARTS
 - TIME SERIES PLOTS
 - FLOW FREQUENCY CURVES
 - FLOW PROTECTED (RESERVED) BY FLOW RECOMENDATIONS

CHARTS


 DAILY TIME SERIES CHART FOR EXAMPLE DRY, AVERAGE AND WET YEAR

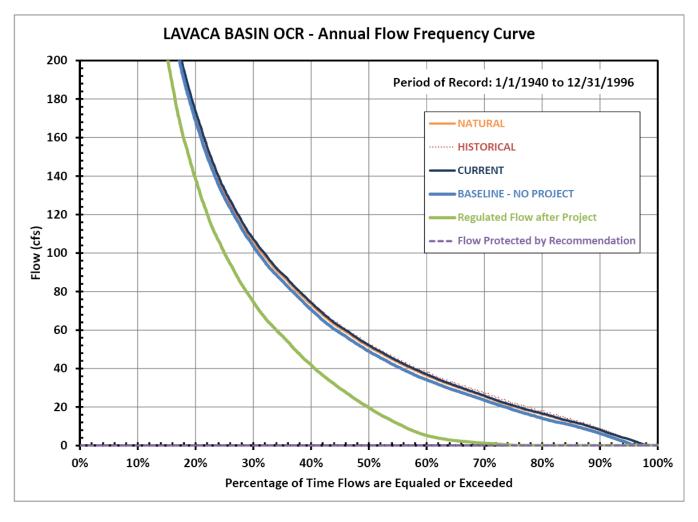
 DAILY FLOW FREQUENCY CHARTS FOR PERIOD OF RECORD


 DAILY FLOW FREQUENCY FOR EACH OF THE FOUR SEASONS

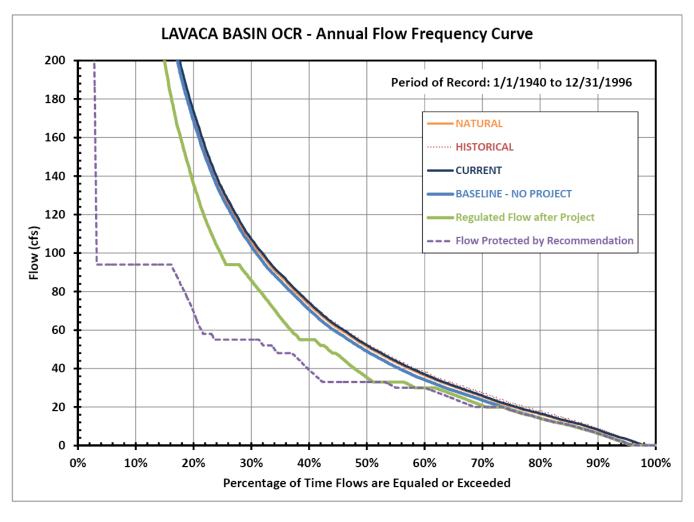
TIME SERIES CHART

- TIME (SINGLE YEAR) IS THE X AXIS
- FLOW (CFS) IS THE Y AXIS
- DIFFERENT FLOWS DEPICTED
 - WAM FLOW WITHOUT PROJECT IN PLACE
 - WAM FLOW WITH PROJECT IN PLACE
 - FLOW PROTECTED BY FLOW REGIME
 - HISTORICAL FLOWS

CL BBEST Page 1 of 8 04/19/2011


 CL BBEST
 Page 1 of 8
 04/19/2011

FLOW FREQUENCY CHART


- PERCENT OF TIME FLOW EXCEEDED ON X AXIS
- FLOW (CFS) ON Y AXIS
- DIFFERENT FLOWS DEPICTED
 - NATURALIZED FLOW (INPUT TO WAM)
 - HISTORICAL FLOWS (BASIS FOR BBEST NUMBERS)
 - CURRENT CONDITION (WAM RUN8)
 - WAM FLOW WITHOUT PROJECT IN PLACE
 - WAM FLOW WITH PROJECT IN PLACE
 - FLOW PROTECTED BY FLOW REGIME

HOW TO USE FLOW FREQUENCY CHART

- Area Between Without and With Project represents the quantity of water the project depleted.
 - Blue No Project
 - Green With Project
- NO EFLOWS; Large Difference Between Without and With Project Curves.
- WITH EFLOWS; Small Difference Between Without and With Project Curves.
- For any Percent of time on X Axis, flows for all curves can be compared.
- For any Flow on Y Axis, Percent of Time Each Curve Equaled or Exceeded can be Compared.

 CL BBEST
 Page 4 of 8
 04/19/2011

 CL BBEST
 Page 4 of 8
 04/19/2011

FLOWS PLOTTED

- NATURAL
- CURRENT
- BASELINE (before project diverts)
 - TCEQ RUN3 with noted changes
- PROJECT (after project diverts)
 - BASELINE with Lavaca Off-Channel Reservoir diverting water subject to no or various instream flow requirements.
- HISTORICAL
- FLOW PROTECTED BY FLOW REGIME

1 -NATURAL

Input Flow Associated with all WAM Models

- No Surface Water Rights Exercised
- No Return Flows Entering the Water Courses
- For Comparison Purposes Only

2-CURRENT

TCEQ RUN8

- Approximation of Current Demands for All Water Rights of Record
- Return Flows Reflecting Current Use Levels
- Major Reservoirs Represented with Current Sedimentation Conditions
- For Comparison Purposes Only

3-BASELINE

TCEQ RUN3, with noted changes

- Full Authorized Demands for All Water Rights of Record
- No Assumed Return Flows
- Major Reservoirs Represented with Authorized Capacities
- Output of this model used as Input to all Project Scenarios

4-PROJECT

BASELINE model used for Hydrology Inputs.

- Off-Channel reservoir project diverting water (by pump) from the Lavaca River
- Represented as most Junior Right in Basin
- General Magnitude of Off-Channel Reservoir
 Project
 - Capacity = 25,000 acre-feet conservation capacity
 - Area = 1,030 acres
 - Pump Rate from Lavaca = 200 MGD (309.44 cfs)

5-HISTORICAL

USGS Observed Flow

- Lavaca River near Edna
- Same Information Used by BBEST in HEFR Analysis

6-FLOW PROTECTED BY FLOW REGIME

Flow Reserved by Flow Recommendation

Considers:

- Applicable Hydrologic Condition.
- All Tiers of Flow Recommendation.
- Has been called "Infinite Infrastructure" line.

HYDROLOGIC CONDITION

AS SUGGESTED IN BBEST REPORT, BASED ON LAKE TEXANA SIMULATED STORAGE IN BASELINE WAM

BBEST DIRECTION

Percent of time condition expected to be applied

Subsistence 5 Dry 20 Average 50 Wet 25

RESULT USING BASELINE WAM

Percent of time conditions actually applied in BBEST scenario

Subsistence 5.3 Dry 20.7 Average 45.5 Wet 30.5

ONLY APPLIES TO BBEST SCENARIO

CORRESPONDING TRIGGERS

SUBSISTENCE

BELOW 93,298 af (54% CAPACITY)

DRY

BETWEEN 93,298 af (54%) AND 132,460 af (77%)

AVERAGE

• BETWEEN 132,460 af (77%) AND 170,300 af (FULL)

WET

TEXANA FULL (170,300)

ADDITIONAL NEEDS

- FLOW TO BAY FOR EACH PROJECT SCENARIO.
- FREQUENCY OF EACH PROJECT SCENARIO.
 MEETING CL BBEST RECOMMENDATIONS.
- BBEST REVIEW OF AFTER PROJECT FLOWS FOR SELECTED SCENARIOS.
- DISCUSSION OF HYDROLOGIC CONDITION USED AND IMPLEMENTION ISSUES.

FUTURE TOPICS

- ADDITITIONAL IDEAS FROM BBASC ON SCENARIOS TO BE TESTED.
- OTHER IDEAS OF MEANINGFUL OUTPUT.
- OTHER BASELINE CONSIDERATIONS.
- OTHER?